Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 17(12): e2006123, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33590620

RESUMO

Disease manifestation and severity from acute infections are often due to hyper-aggressive host immune responses which change within minutes. Current methods for early diagnosis of infections focus on detecting low abundance pathogens, which are time-consuming, of low sensitivity, and do not reflect the severity of the pathophysiology appropriately. The approach here focuses on profiling the rapidly changing host inflammatory response, which in its over-exuberant state, leads to sepsis and death. A 15-min label-free immune profiling assay from 20 µL of unprocessed blood using unconventional L and Inverse-L shaped pillars of deterministic lateral displacement microfluidic technology is developed. The hydrodynamic interactions of deformable immune cells enable simultaneous sorting and immune response profiling in whole blood. Preliminary clinical study of 85 donors in emergency department with a spectrum of immune response states from healthy to severe inflammatory response shows correlation with biophysical markers of immune cell size, deformability, distribution, and cell counts. The speed of patient stratification demonstrated here has promising impact in deployable point-of-care systems for acute infections triage, risk management, and resource allocation at emergency departments, where clinical manifestation of infection severity may not be clinically evident as compared to inpatients in the wards or intensive care units.


Assuntos
Imunidade , Microfluídica , Biomarcadores , Humanos
2.
ACS Nano ; 14(9): 10784-10795, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32844655

RESUMO

The advent of microfluidics in the 1990s promised a revolution in multiple industries from healthcare to chemical processing. Deterministic lateral displacement (DLD) is a continuous-flow microfluidic particle separation method discovered in 2004 that has been applied successfully and widely to the separation of blood cells, yeast, spores, bacteria, viruses, DNA, droplets, and more. Deterministic lateral displacement is conceptually simple and can deliver consistent performance over a wide range of flow rates and particle concentrations. Despite wide use and in-depth study, DLD has not yet been fully elucidated or optimized, with different approaches to the same problem yielding varying results. We endeavor here to provide up-to-date expert opinion on the state-of-art and current fundamental, practical, and commercial challenges with DLD as well as describe experimental and modeling opportunities. Because these challenges and opportunities arise from constraints on hydrodynamics, fabrication, and operation at the micro- and nanoscale, we expect this Perspective to serve as a guide for the broader micro- and nanofluidic community to identify and to address open questions in the field.


Assuntos
Técnicas Analíticas Microfluídicas , Hidrodinâmica , Microfluídica
3.
Lab Chip ; 17(19): 3318-3330, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28861573

RESUMO

We uncover anisotropic permeability in microfluidic deterministic lateral displacement (DLD) arrays. A DLD array can achieve high-resolution bimodal size-based separation of microparticles, including bioparticles, such as cells. For an application with a given separation size, correct device operation requires that the flow remains at a fixed angle to the obstacle array. We demonstrate via experiments and lattice-Boltzmann simulations that subtle array design features cause anisotropic permeability. Anisotropic permeability indicates the microfluidic array's intrinsic tendency to induce an undesired lateral pressure gradient. This can cause an inclined flow and therefore local changes in the critical separation size. Thus, particle trajectories can become unpredictable and the device useless for the desired separation task. Anisotropy becomes severe for arrays with unequal axial and lateral gaps between obstacle posts and highly asymmetric post shapes. Furthermore, of the two equivalent array layouts employed with the DLD, the rotated-square layout does not display intrinsic anisotropy. We therefore recommend this layout over the easier-to-implement parallelogram layout. We provide additional guidelines for avoiding adverse effects of anisotropy on the DLD.


Assuntos
Técnicas Analíticas Microfluídicas/instrumentação , Anisotropia , Simulação por Computador , Desenho de Equipamento , Corantes Fluorescentes , Permeabilidade , Poliestirenos , Pressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...